

Pacific Horticultural and Agricultural Market Access Program (PHAMA)

Technical Report 17: Results of trials to confirm fruit fly non-host status for Polynesian Plum (Spondias dulcis) (FIJI12)

31 JULY 2012

Prepared for AusAID 255 London Circuit

Canberra ACT 2601 AUSTRALIA

42444103

Project Manager:

Varah Nicohou Sarah Nicolson

URS Australia Pty Ltd

Level 4, 70 Light Square Adelaide SA 5000 Australia T: 61 8 8366 1000 F: 61 8 8366 1001

Project Director:

obert lhgram

Author:

Fiji Ministry of Primary Industries, Research Division

Rob Duthie

Reviewer:

Date: Reference: Status: **31 July 2012** 42444103 Final

© Document copyright URS Australia Pty Limited.

This report is submitted on the basis that it remains commercial-in-confidence. The contents of this report are and remain the intellectual property of URS and are not to be provided or disclosed to third parties without the prior written consent of URS. No use of the contents, concepts, designs, drawings, specifications, plans etc. included in this report is permitted unless and until they are the subject of a written contract between URS Australia and the addressee of this report. URS Australia accepts no liability of any kind for any unauthorised use of the contents of this report and URS reserves the right to seek compensation for any such unauthorised use.

Document delivery

URS Australia provides this document in either printed format, electronic format or both. URS considers the printed version to be binding. The electronic format is provided for the client's convenience and URS requests that the client ensures the integrity of this electronic information is maintained. Storage of this electronic information should at a minimum comply with the requirements of the Commonwealth Electronic Transactions Act 2000.

Where an electronic only version is provided to the client, a signed hard copy of this document is held on file by URS and a copy will be provided if requested.

OFFICIAL REPORT

Report on the Confirmatory Tests to Demonstrate the Efficacy of Commercial Force Hot Air as a Post-Harvest Quarantine Treatment for Eggs of *Bactrocera passiflorae*, Artificially Infested into Matured *Spondias dulcis* (wi).

CONTENTS

AIM	1
INTRODUCTION	
MATERIALS	2
METHODOLOGY	2-4
RESULTS & DISCUSSIONS	4-8
CONCLUSION	9
RECOMMENDATIONS	9
REFERENCE	9
APPENDIX	

Aim

To demonstrate that the commercial operation of the HTFA chambers, based on a shut-down of the heating cycle when the probed fruit (largest fruit by weight) located in the prescribed coldest location (the centre top of the bin or crate), reaches the kill value of at least 47.2°C held for 20 minutes, will ensure complete kill of the most heat tolerant stage (early eggs) of the most tolerant species *Bactocera passiflorae* seeded in fruit of *Spondias dulcis* inside the chamber.

Introduction

The HTFA treatment of 47.2°C held for 20 minutes is an approved quarantine treatment for fruit flies in Fiji. Fruit and vegetables considered to have potential for export are identified by exporters and growers and are tested by the Ministry of Primary Industries. *Spondias dulcis* or 'wi' as it is commonly known was identified as one such product by Nature's Way Cooperative Ltd. This test is being conducted to demonstrate that the HTFA treatment will be efficacious for a complete kill of the most heat tolerant stage (eggs younger than 10 hours old) of the most heat tolerant species, *B. passiflorae* (Frampton 1996).

The largest 'wi' fruit will be probed and placed in the coldest location of the chamber. Fruit seeded with the early eggs (also called infested fruit) will be placed around the probed fruit in the coldest spots. More than 10,000 eggs will be seeded into 100 fruit and it is mandatory that the exact final temperature is identified.

The 'wi' used for this test have been harvested from a number of trees near Agriculture offices, private homes and villages. The fruit are at the mature green stage, firm, undamaged and are of export quality. All fruit are free of pesticides.

This confirmatory test is being conducted using the same confirmatory test procedures that were conducted for eggplant, papaya, mangoes and breadfruit (Tora and Leweniqila 2001) and operating the commercial HTFA as stated in the Biosecurity HTFA Procedure Manual (2011). The HTFA facility is currently certified and approval was issued by NZMAF on 5th July, 2011 following an audit.

The project is funded by the Ministry of Primary Industries (MPI) and the Pacific Horticultural and Agricultural Market Access (PHAMA) Program respectively in the presence of the New Zealand Ministry of Agriculture officials.

Materials

B. passiflorae eggs younger than 10 hours old, 'wi' (*S. dulcis*) at mature-green stage, papaya domes, fine-tipped paint brush, plastic pipette, petri dishes, black filter paper, tissue paper, plastic beakers (500ml), counters, opaque containers, masking tape, permanent markers, scissors, styrofoam boxes, 70% alcohol, cotton wool, scalpel and blade, 4L containers and lids with central opening, sterilised sawdust, wire gauze, 100ml containers, sieve (2 mm), microscope, camera and data sheets.

Methodology

Origin of fruits

Fruits were harvested two days before the test was conducted. All fruits were sourced from trees that were free of insecticides, miticides, herbicides or fungicides and were all of export quality and at the mature stage.

At the Koronivia Research Station

From the bulk of the fruits harvested for testing, 120 of the largest fruit to be seeded were washed, weighed and numbered. 20 of these were used as control fruit. All fruits were securely sealed in styrofoam boxes and transported by road to the HTFA facility in Nadi.

Insects and Egg Collection (fruit fly culture laboratory at the Koronivia Research Station)

Eggs were extracted from the mass rearing laboratories at the Koronivia Research Station of the Ministry of Primary Industries. The fruit fly laboratory colonies were fed on sugar, water, enzymatic hydrolysed protein and Klebsiella pneumonia bacteria. The larvae were reared on a papaya based diet consisting of blended papaya, Torula Yeast and nipagin. Rejuvenation of colonies are carried out at least once a year and adults that were sexually mature (i.e. 3-4 weeks old) were used to produce eggs for the test. The laboratory colonies total adult population is capable of producing 50 000 eggs in a two hour period.

4 egging papaya domes were placed in two healthy *B. passiflorae* cages (two domes per cage), at 1am Wednesday 14th December, 2011. Three hours later, the egging domes were removed. Eggs were then washed from the dome using a spray of water from a hand operated sprayer; collected and percent egg hatch was prepared. Eggs were placed on moist black filter paper in petri dishes. The petri dishes were well sealed using masking tape, and tightly packed in opaque plastic containers in preparation for transport to the Commercial HTFA Unit at Nature's Way Co-operative Ltd.

The eggs were transported by plane to Nadi, accompanied by a fruit fly technician.

At the HTFA facility in Nadi

A second sample of eggs for percent egg hatch was prepared (refer to Appendix 2, Plate 2).

The 120 fruit that were pre-selected for seeding were wiped with 70% alcohol. Care was taken to ensure that the numbers were not wiped off. Using a scalpel and grafting knife, flaps/wedges were made at two lateral points on each side of the fruit. A fine-tipped paintbrush was used to gently place approximately 50 eggs under each flap/wedge and secured in place with masking tape.

The chamber used for the treatment has 4 temperature probes. Fruit centre temperature is measured throughout the treatment by probing the largest fruits which are placed in cold-spots and the base of the probes secured with masking tape to prevent unnecessary air and water contact with the probe. The 100 infested fruit were distributed around the probed fruits in single layers in each lug and heated air is forced over the fruit and through the open lattice bottoms. The HTFA treatment was operated following the "1996 Quarantine Procedures for the Commercial Heat Treatment Chamber, Nadi Airport" (Revised May 2011) approved by MAF.

Hydro-cooling

After treatment, fruits were hydro-cooled immediately by spraying the fruits with water. This continued until temperature reached ambient (below 30° C).

Confirmatory Test Report for Spondias dulcis_March 2012

Control fruits

The control fruits were infested with eggs at the same time as the treated fruits. They were held at 25° C in a screened air-conditioned room during treatment.

After HTFA Treatment

Once fruit reaches ambient temperature after treatment, probes were removed and treated fruits off loaded from the chamber. The treated fruit were gently placed in styrofoam boxes and securely sealed with masking tape. These were transported back to the Koronivia fruit fly laboratory where each infested fruit were placed on sterilised sawdust in secure plastic containers, 1 fruit per container, for an incubation period of 14 to 17 days. At the conclusion of the incubation period, the fruit were dissected and the number of immature stages and adults were recorded.

Results & Discussions

Efficacy of treatment is measured by adult emergence from treated and control fruits.

A. <u>Tables Showing Percent Egg Hatches</u>

Table 1: Total Egg Production After 3 Hours

Date	Cage	No. of Eggs	Percent	Egg Hatch
	No.	Produced	KRS	Nadi
14/12/2011	Bp 603	30,981	61.0%	71.3%
14/12/2011	Bp 605	11,598	82.7%	87.0%

Time in to collect eggs from Cage Bp 603 & Bp 605: 1:00 am

Time Out to end extraction of eggs of Cages Bp 603 & Bp 605: 4:00am

Table 2: History of Egg Hatch Test

Date	Cage no.	Percent egg hatch
18/11/2011	Bp 603	95%
18/11/2011	Bp 605	96%

Confirmatory Test Report for Spondias dulcis_March 2012

Fruit	Fruit	Bin		No. of	of Wt. 100 Total			~
No.	Wt. (g)	No.	Maturity	Pupae	Pupae	Wt.	Adults	Comments
1	191.86	25	Mature green	Nil	Nil	Nil	Nil	Dead unhatched eggs
2	141.41	25	Mature green	Nil	Nil	Nil	Nil	Dead unhatched eggs
3	163.03	25	Mature green	Nil	Nil	Nil	Nil	Dead unhatched eggs
4	143.33	25	Mature green	Nil	Nil	Nil	Nil	Dead unhatched eggs
5	150.49	25	Mature green	Nil	Nil	Nil	Nil	Dead unhatched eggs
6	142.27	17	Mature green	Nil	Nil	Nil	Nil	Dead unhatched eggs
7	127.11	17	Mature green	Nil	Nil	Nil	Nil	Dead unhatched eggs
8	145.47	17	Mature green	Nil	Nil	Nil	Nil	Dead unhatched eggs
9	157.64	17	Mature green	Nil	Nil	Nil	Nil	Dead unhatched eggs
10	144.88	17	Mature green	Nil	Nil	Nil	Nil	Dead unhatched eggs
11	130.03	17	Mature green	Nil	Nil	Nil	Nil	Dead unhatched eggs
12	163.98	19	Mature green	Nil	Nil	Nil	Nil	Dead unhatched eggs
13	137.42	19	Mature green	Nil	Nil	Nil	Nil	Dead unhatched eggs
14	137.61	19	Mature green	Nil	Nil	Nil	Nil	Dead unhatched eggs
15	146.23	25	Mature green	Nil	Nil	Nil	Nil	Dead unhatched eggs
16	160.28	17	Mature green	Nil	Nil	Nil	Nil	Dead unhatched eggs
17	143.58	20	Mature green	Nil	Nil	Nil	Nil	Dead unhatched eggs
18	137.03	20	Mature green	Nil	Nil	Nil	Nil	Dead unhatched eggs
19	128.63	19	Mature green	Nil	Nil	Nil	Nil	Dead unhatched eggs
20	133.40	25	Mature green	Nil	Nil	Nil	Nil	Dead unhatched eggs
21	134.36	17	Mature green	Nil	Nil	Nil	Nil	Dead unhatched eggs
22	136.78	19	Mature green	Nil	Nil	Nil	Nil	Dead unhatched eggs
23	134.94	19	Mature green	Nil	Nil	Nil	Nil	Dead unhatched eggs
24	135.66	19	Mature green	Nil	Nil	Nil	Nil	Dead unhatched eggs
25	147.63	25	Mature green	Nil	Nil	Nil	Nil	Dead unhatched eggs
26	122.02	17	Mature green	Nil	Nil	Nil	Nil	Dead unhatched eggs
27	157.98	17	Mature green	Nil	Nil	Nil	Nil	Dead unhatched eggs
28	133.59	19	Mature green	Nil	Nil	Nil	Nil	Dead unhatched eggs
29	130.51	25	Mature green	Nil	Nil	Nil	Nil	Dead unhatched eggs
30	137.93	25	Mature green	Nil	Nil	Nil	Nil	Dead unhatched eggs
31	127.22	17	Mature green	Nil	Nil	Nil	Nil	Dead unhatched eggs
32	139.79	17	Mature green	Nil	Nil	Nil	Nil	Dead unhatched eggs

B. Table Showing Results of Fruit Fly Development in Treated Fruit

33	123.08	24	Mature green	Nil	Nil	Nil	Nil	Dead unhatched eggs
34	137.54	17	Mature green	Nil	Nil	Nil	Nil	Dead unhatched eggs
35	136.33	25	Mature green	Nil	Nil	Nil	Nil	Dead unhatched eggs
36	124.04	24	Mature green	Nil	Nil	Nil	Nil	Dead unhatched eggs
37	123.83	24	Mature green	Nil	Nil	Nil	Nil	Dead unhatched eggs
38	135.43	17	Mature green	Nil	Nil	Nil	Nil	Dead unhatched eggs
39	131.29	24	Mature green	Nil	Nil	Nil	Nil	Dead unhatched eggs
40	122.93	23	Mature green	Nil	Nil	Nil	Nil	Dead unhatched eggs
41	119.73	24	Mature green	Nil	Nil	Nil	Nil	Dead unhatched eggs
42	123.55	20	Mature green	Nil	Nil	Nil	Nil	Dead unhatched eggs
43	148.50	23	Mature green	Nil	Nil	Nil	Nil	Dead unhatched eggs
44	135.45	23	Mature green	Nil	Nil	Nil	Nil	Dead unhatched eggs
45	172.97	23	Mature green	Nil	Nil	Nil	Nil	Dead unhatched eggs
46	135.92	24	Mature green	Nil	Nil	Nil	Nil	Dead unhatched eggs
47	131.02	25	Mature green	Nil	Nil	Nil	Nil	Dead unhatched eggs
48	136.56	20	Mature green	Nil	Nil	Nil	Nil	Dead unhatched eggs
49	151.07	24	Mature green	Nil	Nil	Nil	Nil	Dead unhatched eggs
50	118.04	23	Mature green	Nil	Nil	Nil	Nil	Dead unhatched eggs
51	130.39	24	Mature green	Nil	Nil	Nil	Nil	Dead unhatched eggs
52	159.34	23	Mature green	Nil	Nil	Nil	Nil	Dead unhatched eggs
53	169.54	23	Mature green	Nil	Nil	Nil	Nil	Dead unhatched eggs
54	149.26	23	Mature green	Nil	Nil	Nil	Nil	Dead unhatched eggs
55	139.26	20	Mature green	Nil	Nil	Nil	Nil	Dead unhatched eggs
56	124.81	20	Mature green	Nil	Nil	Nil	Nil	Dead unhatched eggs
57	126.58	24	Mature green	Nil	Nil	Nil	Nil	Dead unhatched eggs
58	138.13	20	Mature green	Nil	Nil	Nil	Nil	Dead unhatched eggs
59	147.65	20	Mature green	Nil	Nil	Nil	Nil	Dead unhatched eggs
60	145.34	25	Mature green	Nil	Nil	Nil	Nil	Dead unhatched eggs
61	168.13	20	Mature green	Nil	Nil	Nil	Nil	Dead unhatched eggs
62	132.62	24	Mature green	Nil	Nil	Nil	Nil	Dead unhatched eggs
63	132.52	24	Mature green	Nil	Nil	Nil	Nil	Dead unhatched eggs
64	134.70	20	Mature green	Nil	Nil	Nil	Nil	Dead unhatched eggs
65	155.18	19	Mature green	Nil	Nil	Nil	Nil	Dead unhatched eggs
66	164.23	23	Mature green	Nil	Nil	Nil	Nil	Dead unhatched eggs
67	133.76	25	Mature green	Nil	Nil	Nil	Nil	Dead unhatched eggs

68	137.45	20	Mature green	Nil	Nil	Nil	Nil	Dead unhatched eggs
69	134.64	24	Mature green	Nil	Nil	Nil	Nil	Dead unhatched eggs
70	136.36	20	Mature green	Nil	Nil	Nil	Nil	Dead unhatched eggs
71	128.37	20	Mature green	Nil	Nil	Nil	Nil	Dead unhatched eggs
72	169.05	23	Mature green	Nil	Nil	Nil	Nil	Dead unhatched eggs
73	141.82	24	Mature green	Nil	Nil	Nil	Nil	Dead unhatched eggs
74	115.72	23	Mature green	Nil	Nil	Nil	Nil	Dead unhatched eggs
75	126.39	23	Mature green	Nil	Nil	Nil	Nil	Dead unhatched eggs
76	127.46	23	Mature green	Nil	Nil	Nil	Nil	Dead unhatched eggs
77	121.24	17	Mature green	Nil	Nil	Nil	Nil	Dead unhatched eggs
78	131.63	25	Mature green	Nil	Nil	Nil	Nil	Dead unhatched eggs
79	146.90	17	Mature green	Nil	Nil	Nil	Nil	Dead unhatched eggs
80	135.82	19	Mature green	Nil	Nil	Nil	Nil	Dead unhatched eggs
81	143.88	19	Mature green	Nil	Nil	Nil	Nil	Dead unhatched eggs
82	129.55	19	Mature green	Nil	Nil	Nil	Nil	Dead unhatched eggs
83	131.48	24	Mature green	Nil	Nil	Nil	Nil	Dead unhatched eggs
84	128.17	24	Mature green	Nil	Nil	Nil	Nil	Dead unhatched eggs
85	150.55	19	Mature green	Nil	Nil	Nil	Nil	Dead unhatched eggs
86	148.97	23	Mature green	Nil	Nil	Nil	Nil	Dead unhatched eggs
87	149.03	23	Mature green	Nil	Nil	Nil	Nil	Dead unhatched eggs
88	169.57	24	Mature green	Nil	Nil	Nil	Nil	Dead unhatched eggs
89	130.89	24	Mature green	Nil	Nil	Nil	Nil	Dead unhatched eggs
90	130.89	17	Mature green	Nil	Nil	Nil	Nil	Dead unhatched eggs
91	129.40	20	Mature green	Nil	Nil	Nil	Nil	Dead unhatched eggs
92	119.55	19	Mature green	Nil	Nil	Nil	Nil	Dead unhatched eggs
93	118.16	19	Mature green	Nil	Nil	Nil	Nil	Dead unhatched eggs
94	153.67	23	Mature green	Nil	Nil	Nil	Nil	Dead unhatched eggs
95	127.93	25	Mature green	Nil	Nil	Nil	Nil	Dead unhatched eggs
96	130.92	19	Mature green	Nil	Nil	Nil	Nil	Dead unhatched eggs
97	120.57	20	Mature green	Nil	Nil	Nil	Nil	Dead unhatched eggs
98	124.48	20	Mature green	Nil	Nil	Nil	Nil	Dead unhatched eggs
99	114.14	17	Mature green	Nil	Nil	Nil	Nil	Dead unhatched eggs
100	139.32	23	Mature green	Nil	Nil	Nil	Nil	Dead unhatched eggs

It was observed that during dissection, all eggs were unhatched and dead. During the sieving process, there were no pupae collected. The fruit were also seen to have deteriorated, with signs of mould around the incisions made during the seeding process.

Fruit	Fruit	Maturity	No. of	Pupal		Adults		Comments
No.	Wt. (g)	Maturity	Pupae	Wt. (g)	2	9	Total	Comments
1	151.62	Mature green	34	<10	3	2	5	29 unemerged
2	147.69	Mature green	7	<10	0	1	1	6 unemerged
3	128.16	Mature green	16	<10	3	2	5	11 unemerged
4	122.13	Mature green	4	<10	0	0	Nil	4 unemerged
5	122.96	Mature green	Nil	<10	0	0	Nil	24 larvae
6	139.84	Mature green	Nil	<10	0	0	Nil	7 dead larvae
7	127.17	Mature green	31	<10	2	0	2	29 unemerged
8	131.62	Mature green	45	<10	2	5	7	38 unemerged
9	138.33	Mature green	5	<10	0	0	Nil	No emergence
10	121.98	Mature green	35	<10	2	1	3	32 unemerged
11	148.22	Mature green	18	<10	3	2	5	13 unemerged
12	121.60	Mature green	24	<10	1	1	2	22 unemerged
13	120.41	Mature green	18	<10	0	0	Nil	13 larvae
14	120.32	Mature green	15	<10	1	0	1	14 unemerged
15	143.53	Mature green	3	<10	0	0	Nil	4 dead larvae
16	138.39	Mature green	26	<10	3	4	7	1 larva
17	128.96	Mature green	25	<10	0	0	Nil	No emergence
18	124.72	Mature green	8	<10	0	0	Nil	No emergence
19	127.76	Mature green	26	<10	1	0	1	25 unemerged
20	135.38	Mature green	18	<10	1	0	1	17 unemerged

C. Table Showing Results of Fruit Fly Development in Control Fruit

At the end of the incubation period, it was noted that though there were a few pupae, majority of the larvae were still in their 3^{rd} instar. These were left for another 3 to 5 days to pupate before they were rechecked.

In addition to the 20 control "wi" fruits, 2 ripe papaya fruit weighing 940g were used. From this, 33 pupae were collected of which 9 adults emerged.

The treatment print-out (Appendix 1) confirmed that all probes had reached 47.2°C.

Conclusion

Based on the results above, heating the fruit core to 47.2°C and holding it at that temperature for 20 minutes is an effective quarantine treatment in killing the early eggs (eggs younger than 10 hours old) of *Bactrocera passiflorae* infested in wi.

Recommendation

It is therefore recommended that this treatment be approved as an acceptable quarantine treatment for *Spondias dulcis* from Fiji.

References

MAF Regulatory Authority Standard 155.02.03: Specification for the Determination of Fruit Fly Disinfestations Treatment Efficacy (Lo – 155.02.02 is for non host testing).

Frampton C.M and Evans A. 1996. Report on statistical analysis of heat tolerance studies of *Bactrocera passiflorae* and *B. xanthodes*. A report prepared for the Ministry of Agriculture, Fisheries & Forests, Fiji.

1996 Quarantine Procedures for the Commercial Heat Treatment Chamber, Nadi Airport. Revised 2011.

Tora Vueti E and Leweniqila L, 2001. Status of Fruit Flies in Fiji. Secretariat of the Pacific Community, Fiji.

Confirmatory Test Report for Spondias dulcis_March 2012

Page 9

Appendix 2 (Photos of the Confirmatory test process)

Plate 1: Harvesting 'wi' at the Lakena Agriculture Office.

Plate 2: 11,598 B.passiflorae eggs collected in 3 hours from cage no. Bp 605

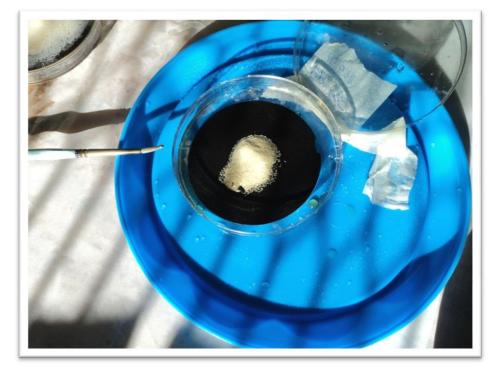


Plate 3: Preparation of second sample of eggs for percent egg hatch determination, Nadi.

Plate 4: Cutting a wedge in which fruit fly eggs will be seeded.

Plate 5: Unloading bins after treatment.

Plate 6: Placing treated fruit into styrofoam box.

Plate 7: Treated fruit placed over sterilized sawdust for incubation

Plate 8: Treated fruit tightly sealed in labelled containers.

Confirmatory Test Report for Spondias dulcis_March 2012

Plate 9: Fruit held in laboratory for incubation at 25°C.

Plate 10: Treated fruit after 14 days.

Confirmatory Test Report for *Spondias dulcis*_March 2012 Page 14

Plate 11: Unhatched eggs in treated fruit after 14 days.

Plate 12: Examining unhatched eggs under microscope.

Confirmatory Test Report for Spondias dulcis_March 2012

Plate 13: Dead unhatched eggs in treated fruit confirmed under microscope.

Plate 14: Dissecting treated fruit.

Confirmatory Test Report for Spondias dulcis_March 2012

Page 16

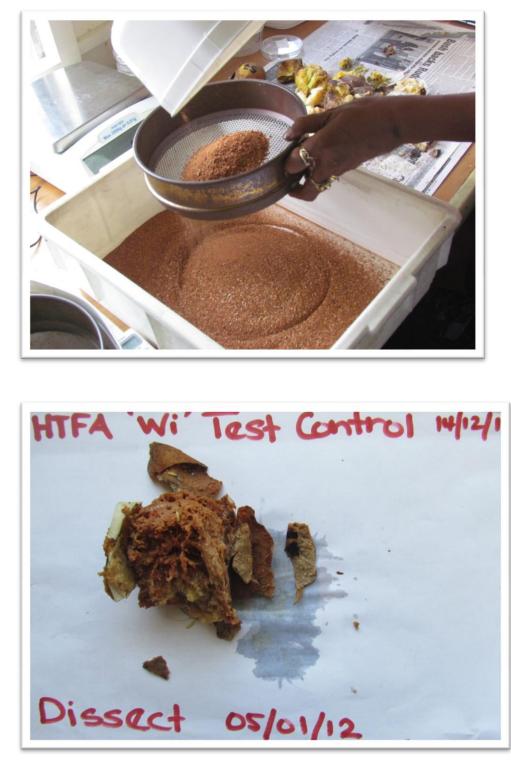


Plate 15: Sieving sawdust for pupae collection.

Plate 16: Rechecking control fruit.

Confirmatory Test Report for Spondias dulcis_March 2012

Page 17

Plate 17: Third instar larva on control fruit.

Limitations

URS Corporation Pty Ltd (URS) has prepared this report in accordance with the usual care and thoroughness of the consulting profession for the use of AusAID and only those third parties who have been authorised in writing by URS to rely on the report. It is based on generally accepted practices and standards at the time it was prepared. No other warranty, expressed or implied, is made as to the professional advice included in this report. It is prepared in accordance with the scope of work and for the purpose outlined in the Contract dated 20 January 2011.

The methodology adopted and sources of information used by URS are outlined in this report. URS has made no independent verification of this information beyond the agreed scope of works and URS assumes no responsibility for any inaccuracies or omissions. No indications were found during our investigations that information contained in this report as provided to URS was false.

This report was prepared between December 2011 and February 2012 is based on the conditions encountered and information reviewed at the time of preparation. URS disclaims responsibility for any changes that may have occurred after this time.

This report should be read in full. No responsibility is accepted for use of any part of this report in any other context or for any other purpose or by third parties.

URS Australia Pty Ltd Level 4, 70 Light Square Adelaide SA 5000 Australia T: 61 8 8366 1000 F: 61 8 8366 1001

www.ap.urscorp.com